126123454 826660114776320 3129540815889530696 o

Le Centre de Recherche Jülich et ses partenaires ont conçu un supercalculateur incomparablement flexible et économe en énergie - c'est l'ordinateur le plus rapide d'Europe.

Jülich, 16 novembre 2020 - Le supercalculateur Jülich JUWELS a été agrandi au cours des derniers mois. Grâce à un nouveau module booster, 85 pétaflops sont désormais possibles, ce qui correspond à 85 quadrillions d'opérations arithmétiques par seconde ou à la puissance de calcul de plus de 300 000 PC modernes. JUWELS peut étendre massivement les limites des simulations et offre également la plate-forme la plus puissante d'Europe pour l'utilisation de l'intelligence artificielle (IA). L'ordinateur que le
Centre de Recherche Jülich, la société franco-allemande Atos et le spécialiste du superinformatique munichois ParTec ont développé avec le constructeur américain NVIDIA est actuellement le système le plus rapide d'Europe.

Le supercalculateur Jülich, financé par le Centre national Gauss pour le calcul intensif, a atteint la 7e place sur la liste TOP500 des ordinateurs les plus rapides au monde. JUWELS se classe troisième sur la liste Green500 actuelle et est le système le plus écoénergétique de la classe de performance la plus élevée.

 

Vidéo: Supercalculateur flexible fabriqué à Jülich (durée: 4:01 min.)
(en allemand - l'article original est en allemand)



"Nous considérons le calcul intensif non seulement comme un objet de notre recherche, mais surtout comme un outil puissant avec lequel nous pouvons répondre à des questions de recherche complexes avec nos partenaires de la science et de l'industrie", déclare le professeur Wolfgang Marquardt, PDG du Centre de Recherche Jülich (Jülich Forschungszentrum).

Avec le système JUWELS entièrement étendu, le Centre de Recherche Jülich permet aux scientifiques d'une grande variété d'institutions et de disciplines scientifiques d'accéder à des capacités de calcul haute performance au plus haut niveau. Dans le même temps, cependant, avec le système, nous démontrons également la gestion responsable de la demande d'énergie toujours croissante pour la fourniture de puissance de calcul. "

 

Un plus grand réalisme

"Un exemple très actuel de la crise actuelle du COVID-19 est le soutien au développement de médicaments sur ordinateur», explique le professeur Thomas Lippert, directeur du Jülich Supercomputing Center. "Seule la puissance de calcul du booster permet à nos chercheurs de simuler les processus avant, pendant et après qu'un ingrédient actif potentiel rencontre un récepteur ou une protéine de manière réaliste."

2020 11 16 amber 450
Recherche d'ingrédients actifs à des échelles de temps biologiquement pertinentes
Copyright: Forschungszentrum Jülich, HHU Düsseldorf / C. Pfleger, H. Gohlke

 
Un autre exemple est la simulation détaillée des mouvements de surface, de la terre et des eaux souterraines. Avec le nouveau booster JUWELS, les chercheurs peuvent pour la première fois effectuer des simulations pour l'Allemagne et l'Europe avec la résolution fine requise, par exemple de pentes individuelles ou de couloirs fluviaux.

 

Applications Eary Access : les premières applications sur le booster JUWELS

Le temps de calcul sur le booster JUWELS est précieux. Les premières applications fonctionnaient déjà sur le système lors de la première phase de test à la fin de l'été et à l'automne de cette année. Les «applications à accès anticipé» fournissent des informations précieuses pour optimiser le code et fournissent les premiers résultats scientifiques tangibles.

Recherche sur les médicaments
eapp amberAmber - enquête sur les substances médicinales à des échelles de temps biologiquement pertinentes
La question du lien entre la liaison médicamenteuse et la cinétique du signal devient de plus en plus au centre de la recherche pharmaceutique. L'évolution temporelle de la liaison de certaines substances à un récepteur est particulièrement intéressante. Les performances du module booster JUWELS permettent désormais des simulations sur des échelles de temps biologiquement pertinentes.
      Lire plus > 

Recherche atmosphérique et climatique
eapp deepacfDeepACF - apprentissage en profondeur pour les prévisions météorologiques à haute résolution
Les prévisions météorologiques jouent un rôle important dans de nombreux domaines économiques et sociaux, par exemple dans la lutte contre les catastrophes, l'aérospatiale et l'agriculture. Dans le cadre du projet DeepACF, les scientifiques du Forschungszentrum Jülich adoptent donc une nouvelle approche pour affiner davantage les prévisions dans l'espace.
      Lire plus >
eapp iconICON - modèles météorologiques et climatiques physiques de nouvelle génération
Avec le booster JUWELS, les ressources sont disponibles pour la première fois pour simuler des formes de nuages ​​de convection dite peu profonde à l'échelle mondiale. Une condition préalable importante pour cela est un développement actuel du modèle ICON. Cela permet désormais d'utiliser en grand nombre de puissants processeurs graphiques (GPU), tels que ceux intégrés au JUWELS Booster.
      Lire plus >
eapp mptracMPTRAC - Calcul de trajectoire massivement parallèle des émissions volcaniques
Les chercheurs utilisent le code MPTRAC pour identifier les sources de dioxyde de soufre (SO2) et pour reconstituer le trajet du gaz à effet de serre dans la haute atmosphère en termes de temps et d'espace en 3D. Les simulations sont basées sur l'évaluation des mesures satellitaires globales du SO2 dans l'atmosphère, qui proviennent pour la plupart d'usines industrielles et de volcans.
      Lire plus >

Terre et environnement
eapp parflowParFlow - simulation des mouvements de surface, de la terre et des eaux souterraines
Le code ParFlow simule les mouvements de surface, de la terre et des eaux souterraines, en tenant compte des influences anthropiques, par exemple l'extraction des eaux souterraines et l'irrigation. Les propriétés spéciales et la taille du module d'appoint JUWELS permettent désormais pour la première fois des simulations terrestres pour l'Europe avec une résolution si fine que les pentes individuelles et les couloirs fluviaux peuvent être résolus. Ceci est à son tour la condition préalable pour déterminer les différences locales dans le cycle de l'eau, qui sont d'un grand intérêt pour les scientifiques et les parties prenantes, par exemple.
      Lire plus >

Astrophysique
eapp nbodyGPU NBODY6 ++ - Amas d'étoiles denses et ondes gravitationnelles
Depuis qu'il a été possible de détecter les ondes gravitationnelles avec des détecteurs comme LIGO et Virgo, les scientifiques ont prévu d'utiliser des ondes gravitationnelles pour étudier les objets astronomiques. Avec l'aide du booster JUWELS et du code GPU NBODY6 ++, des simulations complètes de sources typiques d'ondes gravitationnelles dans des amas d'étoiles denses dans l'univers dit local sont possibles pour la première fois - à des distances qui peuvent être enregistrées par LIGO et Virgo.
      Lire plus >

Traitement quantique de l'information
eapp juqcsJUQCS-G - simulation d'un ordinateur quantique universel
Comprendre les étapes de calcul d'un ordinateur quantique sur des ordinateurs numériques conventionnels est un grand défi. Les calculs avec des quantités de données aussi importantes et un nombre proportionnellement élevé de processeurs ne sont possibles qu'avec un logiciel qui fonctionne efficacement sur les architectures parallèles des supercalculateurs actuels. Pour cette raison, le logiciel de simulation quantique massivement parallèle JUQCS-G a été développé, avec lequel les ressources des supercalculateurs actuels, la mémoire existante, la puissance de calcul et le réseau de communication peuvent être pleinement exploités.
      Lire plus >

Recherche de matériaux
eapp somaSOMA - Recherche sur la cinétique des nanomatériaux
Le code SOMA permet de simuler la soi-disant micro-séparation de phases de matériaux polymères. La particularité: l'outil de simulation peut résoudre les détails des molécules de polymère et en même temps enregistrer des échelles de longueur qui sont pertinentes pour des applications techniques, par exemple pour la production de nanomembranes.
      Lire plus >

Neuroscience
eapp etrainE-train - comprendre les processus d'apprentissage dans le cerveau
Comment le cerveau apprend-il exactement à résoudre des tâches complexes et exigeantes? Malgré des recherches intensives, cette question reste largement sans réponse. Le module booster du supercalculateur JUWELS, grâce au matériel extrêmement puissant qui y est utilisé et aux réseaux haute performance utilisés, offre d'excellentes conditions pour cartographier les processus d'apprentissage dans de grands modèles de colonnes dites corticales et d'aires cérébrales.
      Lire plus >

Physique du plasma
eapp picoPIConGPU - simulations plasma pour accélérateurs de particules de la prochaine génération
PIConGPU est un environnement de simulation open source dans le domaine de la physique des lasers et des plasmas. Il est utilisé pour développer de puissants accélérateurs de particules qui sont utilisés, par exemple, pour la radiothérapie dans le traitement du cancer, la physique des hautes énergies et la recherche avec des photons. Le code calcule la dynamique relativiste des électrons, des protons et des ions dans les champs électriques et magnétiques, en tenant compte de l'ionisation, des collisions de particules et du rayonnement.
      Lire plus >

Physique élémentaire des particules
eapp qgpHotQCD - Explorer les états extrêmes de la matière
Le programme de recherche HotQCD vise à mieux comprendre la structure des phases et les propriétés caractéristiques de la matière en interaction forte.

      Lire plus >
eapp charm baryonen 2Baryons avec charme
Il existe quatre interactions fondamentales, également appelées les quatre forces fondamentales de la physique: l'électromagnétisme, l'interaction faible et forte et la gravité. Les trois premiers forment le modèle standard de la physique élémentaire des particules. Cependant, ce modèle - qui est en fait une théorie - est incomplet. Les chercheurs espèrent donc développer une nouvelle physique au-delà du modèle standard en comparant des prédictions théoriques de plus en plus précises et des données expérimentales.
      Lire plus >
eapp hadronStructure Flavor-Singulet des hadrons - une question fondamentale en physique des particules
Ce projet traite de la distribution des quarks et des gluons dans les protons et les neutrons ainsi que dans d'autres états liés, les soi-disant hadrons, qui sont décrits par la QCD. Les résultats de ces recherches sont d'une grande pertinence théorique, mais sont tout aussi importants pour les expériences en cours telles que celles menées au CERN.
      Lire plus >
eapp signqcdSignQCD - simulation de la forme la plus chaude de la matière
SignQCD simule la forme de matière la plus extrême qui puisse être créée en laboratoire: le plasma quark-gluon. C'est un état fluide de la matière qui est déterminé par les interactions entre les composants élémentaires du noyau atomique - les quarks et les gluons. Les particularités du module booster JUWELS permettent pour la première fois d'étudier cette forme de matière grâce à des simulations directes avec des densités de quarks finies - quoique faibles. Cela ouvre des perspectives complètement nouvelles pour les investigations informatiques et de nouvelles connaissances sur le diagramme de phase QCD peuvent être obtenues.
      Lire plus >

 

 Répartition intelligente des tâches - efficacité énergétique maximale

JUWELS est basé sur une architecture modulaire hautement flexible développée par le Centre de Recherche Jülich avec des partenaires européens et internationaux. «Avec ses processeurs graphiques puissants et très efficaces, le nouveau module booster est spécialement conçu pour les applications extrêmement gourmandes en calcul qui peuvent facilement être traitées en parallèle sur un grand nombre de cœurs de calcul», explique Dr. Dorian Krause, qui est responsable de la mise en place et de l'exploitation du système extraordinairement complexe de Jülich. "De plus, JUWELS fait partie des 10 ordinateurs les plus rapides au monde, leader en matière d'efficacité énergétique."

2020 11 16 nvidia 450
GPU NVIDIA A100 Tensor Core
Droit d'auteur: Forschungszentrum Jülich / TRICKLABOR

Le supercalculateur Jülich est l'un des premiers à être équipé de GPU NVIDIA A100 Tensor Core basés sur l'architecture NVIDIA Ampere. Le booster combine environ 12 millions de cœurs CUDA (FP64) sur ses plus de 3700 processeurs graphiques, qui sont connectés les uns aux autres via un réseau haute performance NVIDIA Mellanox HDR Infiniband avec 200 Gb / s. Le booster à lui seul atteint une performance maximale de 73 pétaflops. Surtout pour les applications d'IA qui imposent des exigences différentes au matériel, même jusqu'à 2,5 exaflops sont possibles: cela correspond à 2,5 billions d'opérations arithmétiques par seconde. Le module est ainsi la plateforme la plus puissante d'Europe pour l'utilisation de l'intelligence artificielle (IA).

«Le point fort de JUWELS est que les deux modules, l'ancien« module de cluster », qui fonctionne avec des processeurs rapides (CPU), et le module booster avec ses GPU, sont très étroitement interconnectés», déclare Bernhard Frohwitter, PDG de Münchner Spécialistes en supercalcul ParTec. La collaboration entre les modules contrôle le système logiciel modulaire de ParTec ParaStation Modulo, un développement mondial de premier plan en Allemagne. «Avec ParaStation Modulo, JUWELS peut accéder de manière dynamique à tous les CPU et GPU d'un code et ainsi optimiser le calcul.»

2020 11 16 kuehlung 450
Refroidissement par eau dans le supercalculateur JUWELS
Droit d'auteur :
Centre de Recherche Jülich / TRICKLABOR

«Les deux modules proviennent d'Atos et sont basés sur notre infrastructure BullSequana X, dont la solution DLC (Direct Liquid Cooling) hautement efficace, refroidie par eau et brevetée contribue de manière significative à la faible consommation d'énergie du système», explique Agnès Boudot, Senior Vice President, Head of HPC & Quantum chez Atos. "La conception d'Atos garantit que la puissance de calcul du processeur et des lames GPU peut être pleinement utilisée par les applications."

 

 

 

Préparé pour les technologies futures

Pour le professeur Thomas Lippert, le système JUWELS est une étape importante sur la voie de l'ordinateur européen exascale, qui doit être mis en service à partir de 2023. La construction et l'exploitation d'un tel supercalculateur sont considérées comme la prochaine grande étape du supercalculateur dans le monde. Avec une puissance de calcul d'au moins un exaflops, soit 1 billion d'opérations en virgule flottante par seconde, il serait au moins douze fois plus rapide que le supercalculateur JUWELS.

«L'architecture modulaire de JUWELS, la conception de ses nœuds de calcul, le réseau, l'infrastructure et le refroidissement ainsi que l'architecture logicielle peuvent être facilement transférées vers un ordinateur exascale, où les coûts et la consommation d'énergie restent justifiés», explique Thomas Lippert.

JUWELS est également parfaitement préparé pour l'avenir du calcul intensif à d'autres égards. La conception modulaire permet d'intégrer de futures technologies qui font également l'objet de recherches intensives au Forschungszentrum Jülich: il s'agit par exemple de modules informatiques quantiques ou de modules neuromorphiques qui fonctionnent sur le modèle du cerveau humain.

126123454 826660114776320 3129540815889530696 o
Supercalculateurs JUWELS dans la salle informatique du Jülich Supercomputing Center
Droit d'auteur :  Forschungszentrum Jülich / Wilhelm-Peter Schneider

 

 Financement fédéral et étatique

L'achat du booster JUWELS est financé par le gouvernement fédéral et le Land de Rhénanie du Nord-Westphalie. JSC exploite JUWELS en tant que membre du Gauss Centre for Supercomputing (GCS), l'association des centres nationaux de supercalcul en Allemagne, qui comprend les trois centres de calcul du Forschungszentrum Jülich (JSC), de l'Académie bavaroise des sciences (LRZ) et de l'Université de Stuttgart (HLRS).

Le temps de calcul est alloué après l'application et l'évaluation scientifique au niveau national et européen. Le GCS et le Forschungszentrum Jülich sont soutenus par le ministère fédéral de l'Éducation et de la Recherche (BMBF) et le ministère de la Culture et des Sciences de l'État de Rhénanie du Nord-Westphalie ainsi que le ministère de la Science, de la Recherche et de l'Art du Bade-Wurtemberg et le ministère de la Science et de l'Art de Bavière.

 

Concept du Jülich
Le concept modulaire mis en œuvre au Jülich Supercomputing Center (JSC) a été développé au cours de nombreuses années de coopération avec la société de logiciels munichoise ParTec. Il fournit un supercalculateur composé de plusieurs composants spécialisés qui peuvent être combinés dynamiquement selon les besoins à l'aide d'un logiciel standardisé. Depuis 2011, des partenaires européens de l'industrie et de la recherche ont développé et testé les premiers systèmes modulaires sous la direction de Jülich, et ont continuellement élargi le concept dans les projets de recherche DEEP financés par l'UE .

Le booster est né d'une collaboration entre les experts JSC et le fabricant de supercalculateurs Atos (France), le spécialiste du logiciel ParTec (Allemagne) et le fabricant de processeurs graphiques NVIDIA (USA). Le spécialiste des réseaux israélien Mellanox, également impliqué, a été repris par NVIDIA au printemps de cette année.

 

 Caractéristiques :

caracteristiques

 

Supercalculateur pour les grandes tâches arithmétiques et l'IA
Grâce à un nouveau module booster, JUWELS a considérablement augmenté sa puissance de calcul. Ces derniers mois, des chercheurs de toute l’Europe ont adapté et développé des programmes pour qu’ils fonctionnent massivement en parallèle sur plus de 3 700 processeurs graphiques (GPU) du booster.
                                                        Lire plus >  

 

 Prof. Dr. Dr. Thomas Lippert
Directeur du Jülich Supercomputing Center

Dr. Dorian Krause
Jülich Supercomputing Center

 

traduction de l'article (en allemand) du Jülich : https://www.fz-juelich.de/portal/DE/Presse/Pressemitteilungen/2020/2020-11-16-juwels-booster-pm/_node.html